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Abstract A new strategy of modeling and analysis
with transmission line matrix (TLM) algorithm is
developed to account for dynamic effects of both
bi-isotropic and  bi-anisotropic media on
propagation and scattering characteristics. First, the
symmetrical condensed node in the frequency-
domain is generalized to involving bi-anisotropic
media. The nodal scattering matrix is derived
directly from Maxwell's equations using the
centered finite difference and the transformation of
variable. With the proposed node, a frequency-
domain TLM algorithm is then established for
analysis of propagation and scattering of arbitrary
waveguiding structures including discontinuities
such as chiral-filled rectangular waveguide,
microstrip on a bi-isotropic non-reciprocal or chiral
substrate. It is shown that the proposed TLM
modeling provides a powerful tool for theoretical
study of a new class of complex materials.

Introduction

The study of electromagnetic wave propagation
along bi-isotropic and bi-anisotropic media is very
important since they offer some promising
applications in microwave technology as well as
radio engineering. The interesting properties of
these materials have been intensively investigated
in recent years [1]-{8]. However, in spite of
numerous works published on this subject, only
very few cases have been reported that are
essentially solved by numerical techniques. The
analytical methods can only be applied to some
special limited circumstances. Therefore, it is
imperative to develop an efficient mathematical
formalism for unified analysis of these new
transmission media.
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In the present work, we propose a new modeling
strategy using the frequency-domain transmission
line matrix (FDTLM) method in which the
algorithm of [9] is generalized from isotropic
(anisotropic) to bi-isotropic (bi-anisotropic) media.
These materials are first characterized by linear
constitutive relations that couple the electric and
the magnetic field vectors by four independent

tensors (&, [, E, E ). The electromagnetic field

components of Maxwell's equations are then
transformed into nodal voltages and loop currents
of TLM framework with reference to Johns'
symmetrical condensed node [10]. Combining a
centered-finite difference of network differential
equations and a network parameter transformation
leads to a FDTLM nodal scattering matrix. Finally,
a TLM algorithm [9] based on the proposed nodal
scattering matrix is implemented in the frequency-
domain to calculate 2D eigenvalue and 3D
discontinuity problems of waveguiding structures.
A number of numerical examples are presented to
verify the proposed theory and also demonstrate
some interesting properties of bi-isotropic and bi-
anisotropic media.

Theory
The constitutive relations in a most general bi-
anisotropic medium can be written (assuming the
exp( jot) time-dependence) in the form of
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€ and [I are permittivity tensor and permeability
tensor of the medium, respectively, and the tensors
& and ( characterize the coupling between electric

and magnetic fields. Using (1) together with
Maxwell's equation, we have
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To establish a standard TLM formulation based on
Johns' symmetrical condensed node [10],
following equality is established that relates
network voltages and currents to the electric and
magnetic fields:

V.=Ax-E,, V,=AyE,, V,=AE,

I=4x-Zy-H , 1,=Ay-Zy-H,, 1,=4-2, - H,

X=x/Ax, Y=y/Ay, Z=z7/A
where Ax, Ay, Az are the grid dimensions and Z,
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is the characteristic impedance of free space.
Substituting (3) into (2) leads to a set of coupled
nodal voltage and current differential equations
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In the network model of TLM, by using a centered-
finite difference at the center of symmetrical
condensed node, a set of voltage and current
components are obtained at the boundary planes of
the node. Each pair of voltage and current variables
consists of a polarized planar wave. Thereafter, the
voltage and current variables are adequately
transformed at the nodal boundary planes into
relevant incident and reflected waves. After some
manipulation, a relationship can be set up to
interrelate the nodal voltage and current variables
to the corresponding incident voltages as described
in the following matrix equation:
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The immediate step is now to make appropriate
averaging of the relevant nodal voltages and
currents at the center of the node. It yields six pairs
of hybrid equations that interrelate reflected and
incident voltages. For example, for ports 1 and 12,
we have

Vi=V,+1 -V (6)

Vo=V,-L-V
The combination of (5) with (6) leads to a full
12 X 12 nodal scattering matrix that completely

describes the scattering property of the frequency-
domain TLM node,

Numerical Examples and Discussion
To examine computational feature and validity of
the proposed node, a TLM algorithm [9] based on
this nodal scattering matrix is implemented in the
frequency-domain. Our particular interest is to
apply the present theory to a class of bi-isotropic
and bi-anisotropic waveguiding structures.

As the first example, a microstrip structure on bi-
isotropic substrate is considered, which was also
studied in [6, 7]. In this case, the substrate consists
of a pure non-reciprocal material with Tellegen



parameter X or a pure reciprocal material with

chirality parameter x. Therefore, the tensors & and

E can be reduced to scalar quantities, such that,
E=(x- jK)\/ HoEy )
C=(x+ j’()\l HoEy

Fig. 1 shows a comparison of our results with the
quasi-static solution available in [6, 7]. The
normalized phase velocities are obtained as a
function of Tellegen parameter j or chirality
parameter k. It is clear that the results of the
proposed analysis tends to converge towards that of
the quasi-static approximations (dashed lines) as
the operating frequency decreases. This indicates
that a very good agreement can be expected for the
complete static situation. In our second example, a
bi-isotropic material is asymmetrically inserted
longitudinally in a rectangular waveguide. An
interesting non-reciprocity is observed in Fig. 2 for
the magneto-electric effect of parameter Y.
Consequently, we can explore a possibility of using
bi-isotropic materials instead of (or combined with)
magnetically biased ferrite in the design of novel
devices and components.

To look further into the described method,
scattering characteristics are calculated for a
rectangular waveguide partially loaded with
generalized bi-isotropic material involving both
parameters y and x (Fig. 3). The magnitudes and
phases of the transmission and reflected
coefficients of the TE o-wave are determined as a
function of frequency. It is found that  leads to the
non-reciprocal phase shifter (®,, # @,,) while x

results in the chirality (@,, # @,,). It should be

noted that, only the analysis of rectangular
waveguide discontinuities is concerned in the
present paper, such a method can be readily
extended to modeling of arbitrary guided-wave
structures.

Conclusions
In this work, a new FDTLM modeling has been
generalized for considering both bi-isotropic and
bi-anisotropic media in guided-wave structures. An
efficient and accurate TLM algorithm using the
proposed TLM node is developed and used to the
study of a class of complex structures. A number of
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numerical examples are presented to verify the
present theory and also to demonstrate its
usefulness and generality. It is shown that
interesting property can be derived from using
these particular materials in the guided-wave
structures. It comes to conclude that the present
field-theoretical modeling technique may pave the
way for establishing a unified analysis and design
tool for a new family of devices and circuits.

References
in N. Enghera and P. Pelet, "Modes in
chirowaveguides," Opt. Lett., vol. 14, pp. 593-595,
June 1989.
[2] J.. M. Svedin, ‘"Propagation analysis of

chirowaveguides using the finite-element method, "
IEEE Trans. Microwave Theory Tech., vol. MTT-38,
pp. 1488-1496, Oct. 1990.

C. M. Krowne, "Nonreciprocal -electromagnetic
properties of composite chiral-ferrite media," IEE
Proceedings-H, vol. 140, pp. 242-248, June 1993.
M. 1. Saadoun and N. Enghera, "Theoretical study of
variation of propagation constant in a cylindrical
waveguide due to chirality: chiro-phase shifting,"
IEEE Trans. Microwave Theory Tech., vol. MTT-42,
pp- 1690-1694, Sept. 1994.

W. Yin, W. Wang and P. Li, "Guided
electromagnetic waves in gyrotropic
chirowaveguidess," IEEE Trans. Microwave Theory
Tech., vol. MTT-42, pp. 2156-2163, Nov. 1994,

P. K. Koivisto and J. Sten, "Quasi-static image
method applied to bi-isotropic microstrip geometry,"
IEEE Trans. Microwave Theory Tech., vol. MTT-43,
pp. 169-175, Jan. 1995.

F. Olyslager, E. Laermans and D. Zutter, "Rigorous
quasi-TEM analysis of multiconductor transmission
lines in bi-isotropic media — Part I: Theoretical
analysis for general inhomogeneous media and
generalization to bi-anisotropic media; Part II:
Numerical solution for layered media," IEEE Trans.
Microwave Theory Tech., vol. MTT-43, pp. 1409-
1423, July 1995.

M. Norgren and S. He, "Reconstruction of the
constitutive parameters for an Q material in a
rectangular waveguide," IEEE Trans. Microwave
Theory Tech., vol. MTT-43, pp. 1315-1321, June
1995.

J. Huang and K. Wu, “A unified TLM model for
wave propagation of electrical and optical structures
considering permittivity and permeability tensors,”
IEEE Trans. Microwave Theory Tech., vol. MTT-43,
pp. 2472-2477, Oct. 1995.

P. B. Johns, “A symmetrical condensed node for the
TLLM method,” IEEE Trans. Microwave Theory
Tech., vol. MTT-385, pp. 370-377, Apr. 1987.

(3]

[4]

[51

(6]

(71

(8]

(9]

[10]



chiral slab
1.6f -
1.4F -
(a)
o 1-2F -
S
(ST I Quasi-static soluticns
10— t=1.0GHz . 1.0 T LIRSS PrTik T
-=f10GHz & | | _eesesemmimmoeTT .
-~ {=20 GHz | .-~
0.8f
@
1 o — 18111852
© came 1S, 218
, £ 0.6 18241=1S4,)
2.0 2.5 g
©
0.4
e
. , . . , , 0.2
Fig. 1 Normalized phase velocity as a function of y or x for microstrip
I |

geometry of ¢ =5, and wih =1.
7 8 9 10 11 12

Freq. (GHz)
(b}

150

100

50

D (degree)
o

-50
xac

B (rad/mm}
o
[A]
(%))

-100

0.30 150

0.25 ] 1 ! K Freq. (GHz)
0.0 0.5 1.0 1.5 2.0
x (c)

Fig. 3 (a) A asymmetrcall placed bi-iotropic slab in rectangular wavequide
Fig. 2 Phase constants of the fundmantal mode of a rectangular wavequide 22286 mm, b=1016 mm, af=410, =30, heh2, 10

partlly fled with chiral iab (2 = 2286 mm, b = 10,16 m, o b paramets: =10, 105, =5.0);
at= a/10, 2= 3310, h = b2), (o) magnitudes of S-paramefers; (c) Phases of S-parameters,
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