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Abstract A new strategy of modeling and analysis

with transmission line matrix (TLM) algorithm is

developed to account for dynamic effects of both

hi-isotropic and bi-anisotropic media on

propagation and scattering characteristics. First, the

symmetrical condensed node in the frequency-

domain is generalized to involving bi-anisotropic

media. The nodal scattering matrix is derived

directly from Maxwell’s equations using the
centered finite difference and the transformation of

variable. With the proposed node, a frequency-

domain TLM algorithm is then established for

analysis of propagation and scattering of arbitrary

waveguiding structures including discontinuities

such as chiral-filled rectangular waveguide,

microstrip on a hi-isotropic non-reciprocal or chiral

substrate. It is shown that the proposed TLM

modeling provides a powerful tool for theoretical

study of a new class of complex materials.

Introduction
The study of electromagnetic wave propagation

along hi-isotropic and bi-anisotropic media is very

important since they offer some promising

applications in microwave technology as well as

radio engineering. The interesting properties of

these materials have been intensively investigated
in recent years [1 ]-[8]. However, in spite of
numerous works published on this subject, only

very few cases have been reported that are

essentially solved by numerical techniques. The

analytical methods can only be applied to some

special limited circumstances. Therefore, it is
imperative to develop an efficient mathematical

formalism for unified analysis of these new

transmission media.

In the present work, we propose a new modeling

strategy using the frequency-domain transmission

line matrix (FDTLM) method in which the

algorithm of [9] is generalized from isotropic

(anisotropic) to hi-isotropic (bi-anisotropic) media,

These materials are first characterized by linear

constitutive relations that couple the electric and

the magnetic field vectors by four independent

tensors (~, ~, ~, ~). The electromagnetic field

components of Maxwell’s equations are then

transformed into nodal voltages and loop currents

of TLM framework with reference to Johns’

symmetrical condensed node [10]. Combining a

centered-finite difference of network differential

equations and a network parameter transformation

leads to a FDTLM nodal scattering matrix. Finally,

a TLM algorithm [9] based on the proposed nodal

scattering matrix is implemented in the frequency-

domain to calculate 2D eigenvalue and 3D

discontinuity problems of waveguiding structures.

A number of numerical examples are presented to

verify the proposed theory and also demonstrate

some interesting properties of hi-isotropic and bi-

anisotropic media.

Theory
The constitutive relations in a most general bi-
anisotropic medium can be written (assuming the

exp(jcot) time-dependence) in the form of

E= EE+@ m
(1)

B=@+@

where
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Z=&o&: j fi=+j;;:1
‘dt=[~~$] ‘=[!iiii
~ and ~ are permittivity tensor and permeability

tensor of the medium, respectively, and the tensors

~ and ~ characterize the coupling between electric

and magnetic fields, Using (1) together with

Maxwell’s equation, we have
~H aff,

( E )+ja(<uffr +~Jf,+<uHZ)~–x=, jmEo &wE, +EJ?, +E,z ,

~-~ = jwo(g,x~x + EWEV+ .+,) +jm(<y,~,+<.H. +L&,H,)

~-~=@%(Wf,+PJf, +@’,)+j~(C.E.+4.%+CA)
(2)

To establish a standard TLM formulation based on

Johns’ symmetrical condensed node [10], the

following equality is established that relates

network voltages and currents to the electric and

magnetic fields:
Vx=&. Ex, ~= Ay. EY, ~=AzEZ

IZ=h. ZO. Hx, Iy=Ay. ZO. H,, IZ=&. ZO. HZ
(3)

x=x/Ax, Y=y/Ay, Z=z/Az

where Ax, Ay, AZ are the grid dimensions and Z.

is the characteristic impedance of free space.

Substituting (3) into (2) leads to a set of coupled
nodal voltage and current differential equations

~-~=(Y=v. +Ymvy+LZIQ+(CXXL +C.YIY+CXZI,)
f3Y Jz

~-~=(wx+!,,!” +LU)+(%L+Wy+wz)

az, JIX

~~ ~y - (Wx+Lvy +LJQ+(%L +qy +CJJ

~-#= (zmIx+znIy+z,zIz)+(Lnvx+~q! +M”Z,

#-g=(zy.IJ+z z +z,,zz)+(~,xvx+~yyy+~v)YYY 1,2z

?&!J =(zuIx + Zz,zy+z.zz)+(~mv’. + -%VY +4X)

(4)

In the network model of TLM, by using a centered-

finite difference at the center of symmetrical

condensed node, a set of voltage and current

components are obtained at the boundary planes of

the node. Each pair of voltage and current ~ariables

consists of a polarized planar wave. Thereafter, the

voltage and current variables are adequately

transformed at the nodal boundary planes into

relevant incident and reflected waves. After some

manipulation, a relationship can be set up to

interrelate the nodal voltage and current variables

to the corresponding incident voltages as described

in the following matrix equation:

:!!!!;)::=!) “)

The immediate step is now to make appropriate

averaging of the relevant nodal voltages and

currents at the center of the node. It yields six pairs

of hybrid equations that interrelate reflected and

incident voltages. For example, for ports 1 and 12,

we have

y’=vx+I:–y!! (6)
lj; =vx-12 -1$

The combination of (5) with (6) leads to a full

12x 12 nodal scattering matrix that completely

describes the scattering property of the frequency-
domain TLM node,

Numerical Examples and Discussion
To examine computational feature and validity of

the proposed node, a TLM algorithm [9] based on

this nodal scattering matrix is implemented in the
frequency-domain, Our particular interest is to

apply the present theory to a class of hi-isotropic
and bi-anisotropic waveguiding structures.

As the first example, a microstrip structure on bi-

isotropic substrate is considered, which was also

studied in [6, 7]. In this case, the substrate consists

of a pure non-reciprocal material with Tellegen
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parameter x or a pure reciprocal material with

chirality parameter K. Therefore, the tensors < and

~ can be reduced to scalar quantities, such that,

<=(X-jK)= (7)

<=(X+jK)=

Fig. 1 shows a comparison of our results with the

quasi-static solution available in [6, 7]. The

normalized phase velocities are obtained as a

function of Tellegen parameter x or chirality

parameter K. It is clear that the results of the

proposed analysis tends to converge towards that of

the quasi-static approximations (dashed lines) as

the operating frequency decreases. This indicates

that a very good agreement can be expected for the

complete static situation. In our second example, a

hi-isotropic material is asymmetrically inserted

longitudinally in a rectangular waveguide. An

interesting non-reciprocity is observed in Fig. 2 for

the magneto-electric effect of parameter X.

Consequently, we can explore a possibility of using

hi-isotropic materials instead of (or combined with)

magnetically biased ferrite in the design of novel

devices and components.

To look further into the described method,

scattering characteristics are calculated for a

rectangular waveguide partially loaded with

generalized hi-isotropic material involving both

parameters x and K (Fig. 3). The magnitudes and

phases of the transmission and reflected

coefficients of the TE1o-wave are determined as a

function of frequency. It is found that x leads to the

non-reciprocal phase shifter (@l ~ ~ @z]) while K

results in the chirality (@l, # 022). It should be

noted that, only the analysis of rectangular

waveguide discontinuities is concerned in the

present paper, such a method can be readily

extended to modeling of arbitrary guided-wave

structures.

Conclusions
In this work, a new FDTLM modeling has been

generalized for considering both hi-isotropic and

bi-anisotropic media in guided-wave structures. An

efficient and accurate TLM algorithm using the
proposed TLM node is developed and used to the

study of a class of complex structures. A number of

1797

numerical examples are presented to verify the

present theory and also to demonstrate its

usefulness and generality. It is shown that

interesting property can be derived from using

these particular materials in the guided-wave

structures. It comes to conclude that the present

field-theoretical modeling technique may pave the

way for establishing a unified analysis and design

tool for a new family of devices and circuits.
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